Subgroup ($H$) information
| Description: | $C_2^3\times C_6$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(4,7)(5,6), (4,5)(6,7)(8,14)(9,11), (1,2,3)(4,5)(6,7), (10,12)(13,15), (4,6)(5,7)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^5.D_6^2$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $D_4\times D_6$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $S_3\times C_2^5:D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| Outer Automorphisms: | $D_4^2$, of order \(64\)\(\medspace = 2^{6} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_3^3.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $\card{W}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |