Properties

Label 4608.pc.48.KU
Order $ 2^{5} \cdot 3 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_2^4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6), (4,5)(6,7)(8,14)(9,11), (1,2,3)(4,7)(5,6), (4,5)(6,7)(8,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2^7:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$(D_4\times C_2^3):D_6$
Normal closure:$C_{12}.C_2^5$
Core:$C_6$
Minimal over-subgroups:$C_{12}.C_2^4$$C_{12}.C_2^4$$C_{12}.C_2^4$$(C_2\times C_{12}):D_4$$(C_2\times C_{12}):D_4$$(C_2\times C_{12}):D_4$$(C_2\times C_{12}):D_4$
Maximal under-subgroups:$C_6\times D_4$$C_2^2\times C_{12}$$C_6\times D_4$$C_6\times D_4$$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_6\times Q_8$$D_4:C_6$$D_4:C_6$$D_4:C_6$$D_4:C_6$$D_4:C_2^2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image not computed