Properties

Label 4608.pc.4.P
Order $ 2^{7} \cdot 3^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(D_4\times A_4):D_6$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,6)(5,7), (1,2)(4,7,5,6)(8,11)(9,14)(10,13)(12,15), (4,5,7), (4,7)(5,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $(C_6^2\times A_4).C_6.C_2^5$
$\card{W}$\(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_6\times A_4).C_2^5$
Normal closure:$(C_6\times A_4).C_2^5$
Core:$C_2\times C_{12}:S_4$
Minimal over-subgroups:$(C_6\times A_4).C_2^5$
Maximal under-subgroups:$C_2\times C_{12}:S_4$$D_4\times C_3:S_4$$D_4\times C_3:S_4$$C_2^4.C_6^2$$(C_2\times C_{12}):S_4$$(C_2\times C_{12}):S_4$$C_2\times C_{12}:S_4$$D_4\times C_3:S_4$$(C_3\times Q_8):S_4$$(C_2^2\times D_4):D_6$$\GL(2,\mathbb{Z}/4):C_2^2$$\GL(2,\mathbb{Z}/4):C_2^2$$C_6^2.C_2^3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed