Properties

Label 4608.pc.288.DJ
Order $ 2^{4} $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(4,5)(8,14)(9,11)(10,15)(12,13), (1,2)(4,5)(8,10,14,12)(9,15,11,13), (8,11)(9,14)(10,13)(12,15), (8,9)(10,15)(11,14)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4:D_4$
Normal closure:$C_2^5.S_3^2$
Core:$C_2^2$
Minimal over-subgroups:$C_6.D_4$$D_6:C_4$$C_2^3:C_4$$C_2^2\wr C_2$$C_2^2\wr C_2$$C_2^2\wr C_2$$C_2^3:C_4$$C_2^3:C_4$$C_2^2\wr C_2$
Maximal under-subgroups:$C_2^3$$C_2\times C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed