Properties

Label 4608.pc.24.ES
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.\GL(2,\mathbb{Z}/4)$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7,6)(8,11)(9,14)(10,13)(12,15), (4,7)(5,6), (1,2)(4,7,5,6)(8,10,14,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{W}$\(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^6:D_6$
Normal closure:$D_6:\GL(2,\mathbb{Z}/4)$
Core:$C_2^2\times A_4$
Minimal over-subgroups:$C_6.\GL(2,\mathbb{Z}/4)$$C_2^2:\GL(2,\mathbb{Z}/4)$$C_2^5.D_6$$C_2^2:\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^3\times A_4$$C_2^2.S_4$$C_2^2.S_4$$C_2^4:C_4$$C_6.D_4$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed