Subgroup ($H$) information
| Description: | $C_2.\GL(2,\mathbb{Z}/4)$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(4,7,6)(8,11)(9,14)(10,13)(12,15), (4,7)(5,6), (1,2)(4,7,5,6)(8,10,14,12) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_2^5.D_6^2$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_3^3.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| $\card{W}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $18$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |