Subgroup ($H$) information
| Description: | $C_2^3:C_6^2$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(4,7,5)(8,9)(10,13)(11,14)(12,15), (4,6)(5,7), (4,5,7), (4,7)(5,6), (4,7,6)(8,11)(9,14)(10,13)(12,15), (10,12)(13,15), (1,2,3)(4,6,7)\rangle$
|
| Derived length: | $2$ |
The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2^5.D_6^2$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Outer Automorphisms: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_3^3.C_2^6$ |
| $\operatorname{Aut}(H)$ | $S_3\times S_4\times \GL(3,2)$, of order \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \) |
| $\card{W}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |