Properties

Label 4608.pc.16.C
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6:S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,6)(5,7), (1,2)(4,7,5,6)(8,11)(9,14)(10,13)(12,15), (4,5,7), (4,7)(5,6), (4,5)(6,7)(8,14)(9,11), (1,2,3)(4,6,7), (10,12)(13,15)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_3:S_3:S_4\times S_4$
$\card{W}$\(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^5.D_6^2$
Minimal over-subgroups:$C_6:\GL(2,\mathbb{Z}/4)$$C_2\times C_{12}:S_4$$C_2^2\times C_6:S_4$$D_4\times C_3:S_4$$C_2^2:D_6^2$$C_6.\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^2:C_6^2$$C_6:S_4$$C_6:S_4$$C_2^3:D_6$$C_2^2\times S_4$$C_2^2\times S_4$$C_6:D_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed