Properties

Label 4608.pc.144.GV
Order $ 2^{5} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $\langle(4,7)(5,6), (8,9)(10,13)(11,14)(12,15), (4,7)(5,6)(8,11)(9,14)(10,13)(12,15), (1,2)(8,14)(9,11)(10,15)(12,13), (10,12)(13,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $\GL(5,2)$, of order \(9999360\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$D_4\times C_2^4$
Normalizer:$C_2^3:D_4^2$
Normal closure:$D_6\times C_2^4$
Core:$C_2^3$
Minimal over-subgroups:$C_2^3\times D_6$$C_2^3:D_4$$C_2^3:D_4$$C_2^6$$C_2^3:D_4$$C_2^4\times C_4$$C_2^4:C_4$$C_2^6$
Maximal under-subgroups:$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed