Properties

Label 4608.pc.12.BP
Order $ 2^{7} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.D_4^2$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,9)(10,13)(11,14)(12,15), (4,6)(5,7)(8,13)(9,12)(10,11)(14,15), (1,2,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_3:(C_2^9.C_2^5)$
$\card{W}$\(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$(C_2\times C_{12}):D_4^2$
Normal closure:$(C_2\times C_6\times A_4).C_2^4$
Core:$C_6\times D_4$
Minimal over-subgroups:$(C_2\times C_6).D_4^2$$C_2^3.(D_4\times D_6)$$D_6:D_4^2$
Maximal under-subgroups:$C_2^4.D_6$$C_2^4.D_6$$C_2^4.D_6$$C_2^3.D_{12}$$C_2^5:C_6$$C_2^4:D_6$$C_2^4.D_6$$D_6:C_2^4$$C_2^4.D_6$$C_2^3.D_{12}$$C_2^4.D_6$$C_2.D_4^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed