Properties

Label 4608.pc.12.B
Order $ 2^{7} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:\GL(2,\mathbb{Z}/4)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7,5)(8,9)(10,13)(11,14)(12,15), (4,6)(5,7), (4,5,7), (4,7)(5,6), (4,7,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $A_4.C_2^6.C_2^2$
$\card{W}$\(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^5.D_6^2$
Complements:$D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$
Minimal over-subgroups:$C_3\times C_2^2:\GL(2,\mathbb{Z}/4)$$C_2^3:\GL(2,\mathbb{Z}/4)$$C_2^6:D_6$$C_2^5:D_{12}$
Maximal under-subgroups:$C_2^5:C_6$$C_2^3\times S_4$$C_2.\GL(2,\mathbb{Z}/4)$$C_2\times \GL(2,\mathbb{Z}/4)$$C_2.\GL(2,\mathbb{Z}/4)$$C_2^4:D_4$$D_6:D_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed