Properties

Label 4608.pc.1152.BF
Order $ 2^{2} $
Index $ 2^{7} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,3)(4,7)(5,6)(8,15,11,12)(9,10,14,13), (8,11)(9,14)(10,13)(12,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_4^2:C_2^2$
Normalizer:$C_2\times D_4^2$
Normal closure:$C_2^4.D_6$
Core:$C_1$
Minimal over-subgroups:$C_3:C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$D_4$$D_4$$D_4$$C_2\times C_4$$D_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed