Properties

Label 4536.j.216.a1.b1
Order $ 3 \cdot 7 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $\langle(1,2,3), (1,3,2)(7,10,9,8,11,13,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3^2\times \SL(2,8)$
Order: \(4536\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times \GL(2,3)$, of order \(72576\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{21}$
Normalizer:$C_3^2\times D_7$
Normal closure:$C_3\times \SL(2,8)$
Core:$C_3$
Minimal over-subgroups:$C_3\times F_8$$C_3\times C_{21}$$C_3\times D_7$
Maximal under-subgroups:$C_7$$C_3$
Autjugate subgroups:4536.j.216.a1.a14536.j.216.a1.c14536.j.216.a1.d1

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$-2$
Projective image$C_3\times \SL(2,8)$