Subgroup ($H$) information
| Description: | $C_{21}$ |
| Order: | \(21\)\(\medspace = 3 \cdot 7 \) |
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(21\)\(\medspace = 3 \cdot 7 \) |
| Generators: |
$\langle(1,2,3), (1,3,2)(7,10,9,8,11,13,12)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_3^2\times \SL(2,8)$ |
| Order: | \(4536\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7 \) |
| Exponent: | \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian, an A-group, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\SL(2,8).C_3\times \GL(2,3)$, of order \(72576\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $36$ |
| Möbius function | $-2$ |
| Projective image | $C_3\times \SL(2,8)$ |