Properties

Label 4536.j.108.a1.d1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_7$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,2,3)(4,6,5)(7,14)(8,9)(10,13)(11,12), (1,3,2)(4,5,6)(7,13,10,14,12,15,11), (1,2,3)(4,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_3^2\times \SL(2,8)$
Order: \(4536\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times \GL(2,3)$, of order \(72576\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2\times D_7$
Normal closure:$C_3\times \SL(2,8)$
Core:$C_3$
Minimal over-subgroups:$C_3\times \SL(2,8)$$C_3^2\times D_7$
Maximal under-subgroups:$C_{21}$$D_7$$C_6$
Autjugate subgroups:4536.j.108.a1.a14536.j.108.a1.b14536.j.108.a1.c1

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$1$
Projective image$C_3\times \SL(2,8)$