Properties

Label 4530.a.151.a1.a1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 151 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(151\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{2265}, a^{906}, a^{3020}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{4530}$
Order: \(4530\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 151 \)
Exponent: \(4530\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 151 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5,151$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{151}$
Order: \(151\)
Exponent: \(151\)
Automorphism Group: $C_{150}$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Outer Automorphisms: $C_{150}$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{300}$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{4530}$
Normalizer:$C_{4530}$
Complements:$C_{151}$
Minimal over-subgroups:$C_{4530}$
Maximal under-subgroups:$C_{15}$$C_{10}$$C_6$

Other information

Möbius function$-1$
Projective image$C_{151}$