Properties

Label 450.20.2.a1.a1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:C_3^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $b, c^{3}d^{4}, d, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3\times C_5^2:S_3$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_5^2:S_3$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times C_5^2:S_3$
Complements:$C_2$
Minimal over-subgroups:$C_3\times C_5^2:S_3$
Maximal under-subgroups:$C_5\times C_{15}$$C_5^2:C_3$$C_5^2:C_3$$C_3^2$

Other information

Möbius function$-1$
Projective image$C_5^2:S_3$