Subgroup ($H$) information
Description: | $C_5^2:C_3^2$ |
Order: | \(225\)\(\medspace = 3^{2} \cdot 5^{2} \) |
Index: | \(2\) |
Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
Generators: |
$b, c^{3}d^{4}, d, c^{10}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_3\times C_5^2:S_3$ |
Order: | \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \) |
$\operatorname{Aut}(H)$ | $F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_5^2:S_3$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \) |
Related subgroups
Centralizer: | $C_3$ | |||
Normalizer: | $C_3\times C_5^2:S_3$ | |||
Complements: | $C_2$ | |||
Minimal over-subgroups: | $C_3\times C_5^2:S_3$ | |||
Maximal under-subgroups: | $C_5\times C_{15}$ | $C_5^2:C_3$ | $C_5^2:C_3$ | $C_3^2$ |
Other information
Möbius function | $-1$ |
Projective image | $C_5^2:S_3$ |