Properties

Label 448.672.28.o1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ac^{2}d^{21}, b$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\OD_{16}:D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^4\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{28}$
Normalizer:$C_{14}\times \OD_{16}$
Normal closure:$C_2\times \OD_{16}$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_7\times \OD_{16}$$C_2\times \OD_{16}$
Maximal under-subgroups:$C_2\times C_4$$C_8$$C_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{14}:D_4$