Subgroup ($H$) information
| Description: | $C_{14}:D_4$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$ac^{3}d^{7}, d^{7}, c^{4}, b, d^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $(C_{14}\times \OD_{16}):C_2$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7.(C_2^5\times C_6).C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^2\wr C_2\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $C_2^2\wr C_2\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_4\times D_{14}$ |