Properties

Label 448.652.2.d1.d1
Order $ 2^{5} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{28}.D_4$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(2\)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a^{3}c^{7}, c^{4}, a^{2}c^{14}, b^{2}, bc, c^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_8).D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^4\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2^5\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^5\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$(C_2\times C_8).D_{14}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$(C_2\times C_8).D_{14}$
Maximal under-subgroups:$C_{28}:C_4$$C_2\times C_{56}$$C_{14}:C_8$$C_4:C_8$
Autjugate subgroups:448.652.2.d1.a1448.652.2.d1.b1448.652.2.d1.c1

Other information

Möbius function$-1$
Projective image$C_2\times D_{14}$