Subgroup ($H$) information
| Description: | $C_{28}$ |
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$a^{2}b^{2}c^{14}, c^{14}, c^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $(C_2\times C_8).D_{14}$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times Q_8$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Outer Automorphisms: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7.(C_2^4\times C_6).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1792\)\(\medspace = 2^{8} \cdot 7 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{14}\times \OD_{16}$ | ||
| Normalizer: | $(C_2\times C_8).D_{14}$ | ||
| Minimal over-subgroups: | $C_2\times C_{28}$ | $C_2\times C_{28}$ | $C_2\times C_{28}$ |
| Maximal under-subgroups: | $C_{14}$ | $C_4$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{14}:Q_8$ |