Properties

Label 448.652.16.a1.b1
Order $ 2^{2} \cdot 7 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_4$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{2}bc^{14}, c^{4}, b^{2}c^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_2\times C_8).D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $\OD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^4\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$(C_2\times C_8).D_{14}$
Complements:$\OD_{16}$ $\OD_{16}$ $\OD_{16}$ $\OD_{16}$
Minimal over-subgroups:$C_{14}:C_4$$C_{14}:C_4$
Maximal under-subgroups:$C_{14}$$C_4$
Autjugate subgroups:448.652.16.a1.a1448.652.16.a1.c1448.652.16.a1.d1

Other information

Möbius function$0$
Projective image$D_7\times \OD_{16}$