Properties

Label 448.1224.8.h1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:Q_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $abd^{13}, c^{4}, d^{2}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_8.D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{28}.(C_2^5\times C_6).C_2$
$\operatorname{Aut}(H)$ $D_4\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_4\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_4\times D_7$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_8.D_{14}$
Minimal over-subgroups:$C_{14}:Q_8$$D_4:D_7$$C_7:\SD_{16}$$Q_8\times D_7$$C_7:Q_{16}$$C_7:Q_{16}$$C_7:Q_{16}$
Maximal under-subgroups:$C_{28}$$C_7:C_4$$Q_8$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-8$
Projective image$D_4\times D_{14}$