Subgroup ($H$) information
| Description: | $C_2^2.D_{14}$ | 
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) | 
| Index: | \(4\)\(\medspace = 2^{2} \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Generators: | $a, cd^{42}, d^{28}, b, d^{8}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $\SD_{16}:D_{14}$ | 
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) | 
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7.(C_2^4\times C_6).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_2^3:S_4\times F_7$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) | 
| $\card{W}$ | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
