Properties

Label 448.1213.4.p1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.D_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, cd^{42}, d^{28}, b, d^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SD_{16}:D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^4\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2^3:S_4\times F_7$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_4:D_{14}$
Normal closure:$D_4:D_{14}$
Core:$C_{14}:C_4$
Minimal over-subgroups:$D_4:D_{14}$
Maximal under-subgroups:$C_{14}:C_4$$C_2^2\times C_{14}$$C_{14}:C_4$$C_{14}:C_4$$C_{14}:C_4$$C_{14}:C_4$$C_{14}:C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed