Properties

Label 448.1213.14.d1.a1
Order $ 2^{5} $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times Q_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ad^{21}, b, c, d^{42}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $\SD_{16}:D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^4\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2^6:(S_3\times S_4)$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$Q_{16}:C_2^2$
Normal closure:$Q_8\times D_{14}$
Core:$C_2\times Q_8$
Minimal over-subgroups:$Q_8\times D_{14}$$Q_{16}:C_2^2$
Maximal under-subgroups:$C_2\times Q_8$$C_2^2\times C_4$$C_2^2\times C_4$$C_2\times Q_8$$C_2\times Q_8$$C_2\times Q_8$$C_2\times Q_8$$C_2\times Q_8$$C_2\times Q_8$$C_2\times Q_8$$C_2\times Q_8$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function not computed
Projective image not computed