Subgroup ($H$) information
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$d^{42}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
| Description: | $\SD_{16}:D_{14}$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times D_{14}$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
| Outer Automorphisms: | $C_3\times C_2^3:\GL(3,2)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7.(C_2^4\times C_6).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\card{W}$ | \(2\) |
Related subgroups
Other information
| Möbius function | not computed |
| Projective image | not computed |