Properties

Label 448.116.4.c1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}:C_8$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, a^{2}, c^{28}, bc^{28}, c^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $(C_7\times \OD_{16}):C_4$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_2^4\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_4\times D_7$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$(C_7\times \OD_{16}):C_4$
Complements:$C_4$ $C_4$
Minimal over-subgroups:$C_{14}:\OD_{16}$
Maximal under-subgroups:$C_2\times C_{28}$$C_7:C_8$$C_2\times C_8$
Autjugate subgroups:448.116.4.c1.b1

Other information

Möbius function$0$
Projective image$D_{14}:C_4$