Properties

Label 448.1086.14.a1.a1
Order $ 2^{5} $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:Q_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, c^{7}, d$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(Q_8\times D_{14}):C_2$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$(Q_8\times D_{14}):C_2$
Complements:$D_7$ $D_7$ $D_7$ $D_7$
Minimal over-subgroups:$C_{28}.D_4$$Q_8:D_4$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2:C_4$$C_2^2:C_4$$C_4:C_4$$C_2\times Q_8$$C_4:C_4$$C_4:C_4$

Other information

Möbius function$7$
Projective image$C_2^2\times D_{14}$