Subgroup ($H$) information
| Description: | $C_2^2:Q_8$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $a, c^{7}, d$
    
    
    
         | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $(Q_8\times D_{14}):C_2$ | 
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_7$ | 
| Order: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Automorphism Group: | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| Outer Automorphisms: | $C_3$, of order \(3\) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{14}.(C_6\times D_4).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| $W$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) | 
Related subgroups
Other information
| Möbius function | $7$ | 
| Projective image | $C_2^2\times D_{14}$ |