Properties

Label 448.1081.4.y1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times D_7$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, d, d^{2}, bc^{21}d^{2}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(Q_8\times D_{14}):C_2$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$Q_8\times D_{14}$
Normal closure:$Q_8\times D_{14}$
Core:$C_4\times D_7$
Minimal over-subgroups:$Q_8\times D_{14}$
Maximal under-subgroups:$C_4\times D_7$$C_4\times D_7$$C_4\times D_7$$C_7\times Q_8$$C_7:Q_8$$C_7:Q_8$$C_7:Q_8$$C_2\times Q_8$
Autjugate subgroups:448.1081.4.y1.b1448.1081.4.y1.c1448.1081.4.y1.d1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4\times D_{14}$