Properties

Label 448.1081.4.p1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}:Q_8$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $abcd^{2}, d, d^{2}, c^{14}d^{2}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(Q_8\times D_{14}):C_2$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\wr C_2\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^2\times D_{14}$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(Q_8\times D_{14}):C_2$
Minimal over-subgroups:$C_{28}.D_4$$Q_8\times D_{14}$$D_{14}:Q_8$
Maximal under-subgroups:$C_2\times C_{28}$$C_{14}:C_4$$C_{14}:C_4$$C_7:Q_8$$C_7:Q_8$$C_2\times Q_8$

Other information

Möbius function$2$
Projective image$C_2^2\times D_{14}$