Subgroup ($H$) information
Description: | $Q_8\times D_{14}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$ac, d^{4}, c^{2}, d^{7}, b, d^{14}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_4^2.D_{14}$ |
Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_2^2:S_4.C_2^2\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2\wr D_6.F_7$, of order \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^4.(S_4\times F_7)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Related subgroups
Centralizer: | $C_2\times C_4$ | ||||
Normalizer: | $C_4^2.D_{14}$ | ||||
Minimal over-subgroups: | $C_4^2.D_{14}$ | ||||
Maximal under-subgroups: | $C_4\times D_{14}$ | $C_{14}:Q_8$ | $Q_8\times C_{14}$ | $Q_8\times D_7$ | $C_2^2\times Q_8$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_2^2\times D_{14}$ |