Subgroup ($H$) information
| Description: | $A_6\wr S_3$ |
| Order: | \(279936000\)\(\medspace = 2^{10} \cdot 3^{7} \cdot 5^{3} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Generators: |
$\langle(5,13)(6,15), (1,3,4,10,11)(2,5,9,6)(7,15)(12,14,18,16)(13,17)(19,20), (2,7,9,16) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
| Description: | $S_6\wr C_3.C_2^2$ |
| Order: | \(4478976000\)\(\medspace = 2^{14} \cdot 3^{7} \cdot 5^{3} \) |
| Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(17915904000\)\(\medspace = 2^{16} \cdot 3^{7} \cdot 5^{3} \) |
| $\operatorname{Aut}(H)$ | $A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $4$ |
| Möbius function | not computed |
| Projective image | not computed |