Properties

Label 4478976000.p.16._.C
Order $ 2^{10} \cdot 3^{7} \cdot 5^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6\wr S_3$
Order: \(279936000\)\(\medspace = 2^{10} \cdot 3^{7} \cdot 5^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(5,13)(6,15), (1,3,4,10,11)(2,5,9,6)(7,15)(12,14,18,16)(13,17)(19,20), (2,7,9,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $S_6\wr C_3.C_2^2$
Order: \(4478976000\)\(\medspace = 2^{14} \cdot 3^{7} \cdot 5^{3} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(17915904000\)\(\medspace = 2^{16} \cdot 3^{7} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed