Subgroup ($H$) information
| Description: | $D_{193}:C_{16}$ |
| Order: | \(6176\)\(\medspace = 2^{5} \cdot 193 \) |
| Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
| Generators: |
$a^{48}b^{1968}, b^{2316}, b^{24}, a^{72}b^{3102}, b^{1158}, a^{36}b^{2187}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{4632}.C_{96}$ |
| Order: | \(444672\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 193 \) |
| Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_3\times C_{24}$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Automorphism Group: | $C_2^2\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Outer Automorphisms: | $C_2^2\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{2316}.C_{96}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_{386}.C_{96}.C_2^3$ |
| $W$ | $C_{193}:C_{96}$, of order \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \) |
Related subgroups
| Centralizer: | $C_{24}$ | ||
| Normalizer: | $C_{4632}.C_{96}$ | ||
| Minimal over-subgroups: | $D_{193}:C_{48}$ | $D_{193}:C_{48}$ | $C_{1544}.C_8$ |
| Maximal under-subgroups: | $D_{193}:C_8$ | $C_{193}:C_{16}$ | $C_2\times C_{16}$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_{1158}:C_{96}$ |