Properties

Label 444672.d.24.c1
Order $ 2^{5} \cdot 3 \cdot 193 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{193}:C_{48}$
Order: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Generators: $a^{24}, a^{48}, b^{2316}, b^{1544}, b^{1158}, a^{12}, b^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{4632}.C_{96}$
Order: \(444672\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2316}.C_{96}.C_2^5$
$\operatorname{Aut}(H)$ $C_{386}.C_{96}.C_2^4$
$W$$C_{193}:C_{96}$, of order \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$C_{4632}.C_{96}$
Minimal over-subgroups:$C_{2316}.C_{24}$$C_{1544}.C_{24}$$D_{193}:C_{96}$$D_{193}:C_{96}$
Maximal under-subgroups:$D_{193}:C_{24}$$C_{193}:C_{48}$$C_{193}:C_{48}$$D_{193}:C_{16}$$C_2\times C_{48}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{386}:C_{96}$