Properties

Label 444672.d.18.a1
Order $ 2^{7} \cdot 193 $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1544}.C_{16}$
Order: \(24704\)\(\medspace = 2^{7} \cdot 193 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6176\)\(\medspace = 2^{5} \cdot 193 \)
Generators: $a^{24}, b^{24}, b^{2316}, a^{48}, b^{1158}, a^{6}, b^{579}, a^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{4632}.C_{96}$
Order: \(444672\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2316}.C_{96}.C_2^5$
$\operatorname{Aut}(H)$ $C_{772}.C_{96}.C_2^4$
$W$$C_{193}:C_{96}$, of order \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$C_{4632}.C_{96}$
Minimal over-subgroups:$C_{1544}.C_{48}$$C_{1544}.C_{48}$$C_{1544}.C_{32}$
Maximal under-subgroups:$C_{1544}.C_8$$D_{193}:C_{32}$$D_{193}:C_{32}$$C_4\times C_{32}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_{579}:C_{96}$