Subgroup ($H$) information
| Description: | $C_{1544}.C_{16}$ |
| Order: | \(24704\)\(\medspace = 2^{7} \cdot 193 \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(6176\)\(\medspace = 2^{5} \cdot 193 \) |
| Generators: |
$a^{24}, b^{24}, b^{2316}, a^{48}, b^{1158}, a^{6}, b^{579}, a^{12}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{4632}.C_{96}$ |
| Order: | \(444672\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 193 \) |
| Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_3\times C_6$ |
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{2316}.C_{96}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_{772}.C_{96}.C_2^4$ |
| $W$ | $C_{193}:C_{96}$, of order \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-3$ |
| Projective image | $C_{579}:C_{96}$ |