Properties

Label 4400.q.400.a1
Order $ 11 $
Index $ 2^{4} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(11\)
Generators: $c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{44}:C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_4:C_{10}^2$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2^5.C_2^3.S_5$
Outer Automorphisms: $C_2\times D_4\times \GL(2,5)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{55}.(C_2^4\times C_{20}).C_2^3$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(14080\)\(\medspace = 2^{8} \cdot 5 \cdot 11 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{220}$
Normalizer:$C_{44}:C_{10}^2$
Complements:$C_4:C_{10}^2$
Minimal over-subgroups:$C_{55}$$C_{11}:C_5$$C_{22}$$C_{22}$$D_{11}$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{44}:C_{10}^2$