Properties

Label 4400.m.80.a1
Order $ 5 \cdot 11 $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{55}$
Order: \(55\)\(\medspace = 5 \cdot 11 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $c^{44}, c^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{44}.C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $Q_8\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_4\times C_2^3:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Outer Automorphisms: $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$Q_8\times C_{55}$
Normalizer:$C_{44}.C_{10}^2$
Complements:$Q_8\times C_{10}$
Minimal over-subgroups:$C_{55}:C_5$$C_{110}$$C_5\times D_{11}$
Maximal under-subgroups:$C_{11}$$C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$Q_8\times F_{11}$