Properties

Label 4400.m.40.d1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$F_{11}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{5}, c^{20}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{44}.C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5\times Q_8$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_5\times Q_8$
Normalizer:$C_{44}.C_{10}^2$
Complements:$C_5\times Q_8$ $C_5\times Q_8$ $C_5\times Q_8$ $C_5\times Q_8$
Minimal over-subgroups:$C_5\times F_{11}$$C_2\times F_{11}$
Maximal under-subgroups:$C_{11}:C_5$$D_{11}$$C_{10}$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$10$
Möbius function$0$
Projective image$C_{44}.C_{10}^2$