Properties

Label 4400.m.200.a1
Order $ 2 \cdot 11 $
Index $ 2^{3} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $c^{110}, c^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{44}.C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}^2$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $\GL(2,5)\times \GL(3,2)$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $\GL(2,5)\times \GL(3,2)$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10560\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$Q_8\times C_{55}$
Normalizer:$C_{44}.C_{10}^2$
Minimal over-subgroups:$C_{110}$$C_{11}:C_{10}$$D_{22}$$C_{44}$$C_{11}:C_4$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-40$
Projective image$C_{22}:C_{10}^2$