Subgroup ($H$) information
| Description: | $C_{22}$ |
| Order: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Index: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Generators: |
$c^{110}, c^{20}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{44}.C_{10}^2$ |
| Order: | \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times C_{10}^2$ |
| Order: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $\GL(2,5)\times \GL(3,2)$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Outer Automorphisms: | $\GL(2,5)\times \GL(3,2)$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2.C_{165}.C_{10}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(10560\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 11 \) |
| $W$ | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
| Centralizer: | $Q_8\times C_{55}$ | ||||
| Normalizer: | $C_{44}.C_{10}^2$ | ||||
| Minimal over-subgroups: | $C_{110}$ | $C_{11}:C_{10}$ | $D_{22}$ | $C_{44}$ | $C_{11}:C_4$ |
| Maximal under-subgroups: | $C_{11}$ | $C_2$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-40$ |
| Projective image | $C_{22}:C_{10}^2$ |