Subgroup ($H$) information
| Description: | $C_{11}:C_{20}$ |
| Order: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Index: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Generators: |
$c^{55}, c^{110}, c^{20}, b^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.
Ambient group ($G$) information
| Description: | $C_{44}.C_{10}^2$ |
| Order: | \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times C_{10}$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2.C_{165}.C_{10}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| $\operatorname{res}(S)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
| $W$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
Related subgroups
| Centralizer: | $C_{20}$ | |||
| Normalizer: | $C_{44}.C_{10}^2$ | |||
| Minimal over-subgroups: | $C_{220}:C_5$ | $C_4\times F_{11}$ | $C_{44}.C_{10}$ | $C_{44}.C_{10}$ |
| Maximal under-subgroups: | $C_{11}:C_{10}$ | $C_{44}$ | $C_{20}$ |
Other information
| Number of subgroups in this autjugacy class | $15$ |
| Number of conjugacy classes in this autjugacy class | $15$ |
| Möbius function | $-2$ |
| Projective image | $C_{22}:C_{10}^2$ |