Properties

Label 4400.j.40.e1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{110}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{5}, c^{4}, a^{2}b^{8}c^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{44}:C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{110}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{110}$
Normalizer:$C_{22}:C_{10}^2$
Normal closure:$C_2\times C_{110}$
Core:$C_{55}$
Minimal over-subgroups:$C_{110}:C_5$$C_2\times C_{110}$$C_5\times D_{22}$
Maximal under-subgroups:$C_{55}$$C_{22}$$C_{10}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$D_4\times F_{11}$