Properties

Label 4400.j.4.b1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times F_{11}$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}b^{5}c^{20}, a^{2}, b^{2}, c^{22}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{44}:C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{110}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_5\times D_4$
Normalizer:$C_{44}:C_{10}^2$
Minimal over-subgroups:$C_{22}:C_{10}^2$$C_{20}\times F_{11}$
Maximal under-subgroups:$C_{110}:C_5$$C_5\times F_{11}$$C_5\times D_{22}$$C_2\times F_{11}$$C_{10}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_2^2\times F_{11}$