Properties

Label 4400.j.22.e1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_5^2$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a^{5}, a^{2}, b^{2}c^{16}, c^{33}, c^{22}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{44}:C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{110}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_4:C_{10}^2$
Normal closure:$C_{220}:C_{10}$
Core:$C_{20}$
Minimal over-subgroups:$C_{220}:C_{10}$$C_4:C_{10}^2$
Maximal under-subgroups:$C_{10}^2$$C_5\times C_{20}$$C_5\times D_4$$C_5\times D_4$

Other information

Number of subgroups in this autjugacy class$11$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2^2\times F_{11}$