Subgroup ($H$) information
| Description: | $D_4\times C_5^2$ |
| Order: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$a^{5}, a^{2}, b^{2}c^{16}, c^{33}, c^{22}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_{44}:C_{10}^2$ |
| Order: | \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{110}.C_{10}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $11$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | $C_2^2\times F_{11}$ |