Properties

Label 4400.j.10.e1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{55}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $b^{5}, a^{2}b^{8}c^{8}, c^{4}, c^{11}, c^{22}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{44}:C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{110}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_4\times C_{20}$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times D_4\times C_{20}$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{44}:C_{10}^2$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_{220}:C_{10}$$C_{20}:D_{22}$
Maximal under-subgroups:$C_2\times C_{110}$$C_{220}$$D_4\times C_{11}$$C_5\times D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2^2\times F_{11}$