Properties

Label 440.30.88.a1.a1
Order $ 5 $
Index $ 2^{3} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(5\)
Generators: $b^{44}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_5\times C_{44}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{44}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Outer Automorphisms: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{10}\times F_5$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{220}$
Normalizer:$D_5\times C_{44}$
Complements:$C_2\times C_{44}$
Minimal over-subgroups:$C_{55}$$C_{10}$$D_5$$D_5$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$D_5\times C_{44}$