Subgroup ($H$) information
| Description: | $C_{11}:C_{10}$ |
| Order: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Generators: |
$a^{20}, b, a^{8}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.
Ambient group ($G$) information
| Description: | $C_{11}:C_{40}$ |
| Order: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Exponent: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Quotient group ($Q$) structure
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| $\operatorname{Aut}(H)$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Related subgroups
| Centralizer: | $C_4$ | ||
| Normalizer: | $C_{11}:C_{40}$ | ||
| Minimal over-subgroups: | $C_{11}:C_{20}$ | ||
| Maximal under-subgroups: | $C_{11}:C_5$ | $C_{22}$ | $C_{10}$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{11}:C_{20}$ |