Properties

Label 433422.e.9.a1
Order $ 2 \cdot 11^{2} \cdot 199 $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{2189}:C_{22}$
Order: \(48158\)\(\medspace = 2 \cdot 11^{2} \cdot 199 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(4378\)\(\medspace = 2 \cdot 11 \cdot 199 \)
Generators: $a^{99}, a^{18}, b^{11}, b^{199}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{2189}:C_{198}$
Order: \(433422\)\(\medspace = 2 \cdot 3^{2} \cdot 11^{2} \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2189}.C_{165}.C_6^2$
$\operatorname{Aut}(H)$ $C_{2189}.C_{495}.C_2^2$
$W$$C_{199}:C_{66}$, of order \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_{33}$
Normalizer:$C_{2189}:C_{198}$
Complements:$C_9$
Minimal over-subgroups:$C_{33}\times C_{199}:C_{22}$
Maximal under-subgroups:$C_{2189}:C_{11}$$C_{11}\times D_{199}$$C_{199}:C_{22}$$C_{11}\times C_{22}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed