Properties

Label 433422.e.22.a1
Order $ 3^{2} \cdot 11 \cdot 199 $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{199}:C_{99}$
Order: \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)
Generators: $a^{110}, b^{199}, b^{11}, a^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{2189}:C_{198}$
Order: \(433422\)\(\medspace = 2 \cdot 3^{2} \cdot 11^{2} \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2189}.C_{165}.C_6^2$
$\operatorname{Aut}(H)$ $C_{199}.C_{165}.C_6^2$
$W$$C_{199}:C_{66}$, of order \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_{33}$
Normalizer:$C_{2189}:C_{198}$
Complements:$C_{22}$
Minimal over-subgroups:$C_{11}\times C_{199}:C_{99}$$C_{11}\times C_{199}:C_{18}$
Maximal under-subgroups:$C_{6567}$$C_{199}:C_9$$C_{99}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{199}:C_{66}$