Properties

Label 433422.e.2189.a1
Order $ 2 \cdot 3^{2} \cdot 11 $
Index $ 11 \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{198}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Index: \(2189\)\(\medspace = 11 \cdot 199 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $a^{99}, b^{199}, a^{132}, a^{110}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{2189}:C_{198}$
Order: \(433422\)\(\medspace = 2 \cdot 3^{2} \cdot 11^{2} \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2189}.C_{165}.C_6^2$
$\operatorname{Aut}(H)$ $C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}\times C_{198}$
Normalizer:$C_{11}\times C_{198}$
Normal closure:$C_{11}\times C_{199}:C_{18}$
Core:$C_{33}$
Minimal over-subgroups:$C_{11}\times C_{199}:C_{18}$$C_{11}\times C_{198}$
Maximal under-subgroups:$C_{99}$$C_{66}$$C_{18}$

Other information

Number of subgroups in this autjugacy class$199$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{199}:C_{66}$