Properties

Label 43200.bt.360.l1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4), (5,9,8,6,7), (1,3)(2,4), (1,4)(2,3)(5,7,6,8,9)(10,11,13)(12,14,15), (1,2,3,4)(5,6)(8,9)(10,14)(11,12)(13,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_5\times A_4):S_6$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(F_5\times S_4).A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_{30}:D_6$
Normal closure:$(C_5\times A_4):S_6$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_5:\GL(2,\mathbb{Z}/4)$$D_{30}:C_6$$C_{15}:S_4$$D_6:D_{10}$
Maximal under-subgroups:$D_{30}$$C_{15}:C_4$$C_2\times C_{30}$$C_5:D_4$$C_3:D_4$
Autjugate subgroups:43200.bt.360.l1.b1

Other information

Number of subgroups in this conjugacy class$60$
Möbius function$6$
Projective image$(C_5\times A_4):S_6$