Properties

Label 43200.bt.270.j1.b1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,3,4,2)(5,7)(6,9)(10,14)(11,13)(12,15), (1,2)(3,4), (5,6,9,7,8)(10,14)(11,13), (5,9,8,6,7), (1,3)(2,4), (1,4)(5,6)(8,9)(10,11)(12,15)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_5\times A_4):S_6$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(F_5\times S_4).A_6.C_2^2$
$\operatorname{Aut}(H)$ $F_5\times C_2^6:S_4$, of order \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \)
$W$$S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_5:D_4\times S_4$
Normal closure:$(C_5\times A_4):S_6$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$A_4\times C_5:D_4$$C_2^3:D_{30}$$C_2^4:D_{10}$
Maximal under-subgroups:$C_{10}:D_4$$C_{10}:D_4$$C_2^2\times D_{10}$$C_2^2.D_{10}$$C_{10}:D_4$$C_{10}:D_4$$C_2^3\times C_{10}$$C_2^2\times D_4$
Autjugate subgroups:43200.bt.270.j1.a1

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$0$
Projective image$(C_5\times A_4):S_6$