Subgroup ($H$) information
| Description: | $C_2^3:D_{10}$ | 
| Order: | \(160\)\(\medspace = 2^{5} \cdot 5 \) | 
| Index: | \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \) | 
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) | 
| Generators: | 
		
    $\langle(1,3,4,2)(5,7)(6,9)(10,14)(11,13)(12,15), (1,2)(3,4), (5,6,9,7,8)(10,14)(11,13), (5,9,8,6,7), (1,3)(2,4), (1,4)(5,6)(8,9)(10,11)(12,15)(13,14)\rangle$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $(C_5\times A_4):S_6$ | 
| Order: | \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(F_5\times S_4).A_6.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $F_5\times C_2^6:S_4$, of order \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \) | 
| $W$ | $S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $45$ | 
| Möbius function | $0$ | 
| Projective image | $(C_5\times A_4):S_6$ |