Properties

Label 43200.bt.1440.i1.a1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{15}$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,4)(5,6)(8,9)(10,14)(11,12)(13,15), (5,9,8,6,7), (2,4,3)(5,7,6,8,9)(10,11,13)(12,14,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_5\times A_4):S_6$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(F_5\times S_4).A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$D_{15}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times D_{15}$
Normal closure:$(C_5\times A_4):S_6$
Core:$C_5$
Minimal over-subgroups:$C_5:S_4$$C_5:S_4$$C_5:S_4$$C_3\times D_{15}$$C_3:D_{15}$
Maximal under-subgroups:$C_{15}$$D_5$$S_3$
Autjugate subgroups:43200.bt.1440.i1.b1

Other information

Number of subgroups in this conjugacy class$480$
Möbius function$0$
Projective image$(C_5\times A_4):S_6$